Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Genet Med ; 25(11): 100950, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37551667

RESUMEN

PURPOSE: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Cara , Micrognatismo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Facies , Fenotipo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
2.
Am J Med Genet A ; 191(8): 2113-2131, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377026

RESUMEN

Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.


Asunto(s)
Síndrome de Cornelia de Lange , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Factores de Transcripción/genética , Proteínas de Ciclo Celular/genética , Fenotipo , Mutación , Genómica , Estudios de Asociación Genética , Factores de Elongación Transcripcional/genética , Histona Desacetilasas/genética , Proteínas Represoras/genética
3.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
4.
Hum Mol Genet ; 32(3): 386-401, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35981081

RESUMEN

De novo deleterious and heritable biallelic mutations in the DNA binding domain (DBD) of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of disorders termed DEAF1-associated neurodevelopmental disorders (DAND). RNA-sequencing using hippocampal RNA from mice with conditional deletion of Deaf1 in the central nervous system indicate that loss of Deaf1 activity results in the altered expression of genes involved in neuronal function, dendritic spine maintenance, development, and activity, with reduced dendritic spines in hippocampal regions. Since DEAF1 is not a dosage-sensitive gene, we assessed the dominant negative activity of previously identified de novo variants and a heritable recessive DEAF1 variant on selected DEAF1-regulated genes in 2 different cell models. While no altered gene expression was observed in cells over-expressing the recessive heritable variant, the gene expression profiles of cells over-expressing de novo variants resulted in similar gene expression changes as observed in CRISPR-Cas9-mediated DEAF1-deleted cells. Altered expression of DEAF1-regulated genes was rescued by exogenous expression of WT-DEAF1 but not by de novo variants in cells lacking endogenous DEAF1. De novo heterozygous variants within the DBD of DEAF1 were identified in 10 individuals with a phenotypic spectrum including autism spectrum disorder, developmental delays, sleep disturbance, high pain tolerance, and mild dysmorphic features. Functional assays demonstrate these variants alter DEAF1 transcriptional activity. Taken together, this study expands the clinical phenotypic spectrum of individuals with DAND, furthers our understanding of potential roles of DEAF1 on neuronal function, and demonstrates dominant negative activity of identified de novo variants.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Animales , Ratones , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trastornos del Neurodesarrollo/genética , ARN
6.
Am J Med Genet A ; 188(11): 3172-3183, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209348

RESUMEN

Ehlers-Danlos syndrome, hypermobility type (hEDS) is a heritable connective tissue disorder that currently does not have a known molecular etiology. Previous studies have explored the complex symptomology, clinical diagnosis, and psychological aspects of hEDS. Genetics providers currently aid in the diagnosis and management guidance of patients with hEDS, but there is limited data describing the needs and expectations of individuals with hEDS from a clinical genetics appointment. Our study sought to explore these items through the use of an online survey to assess participants' beliefs, needs and expectations (BNE) for genetic counseling as well as questions about demographics, hEDS symptoms, and current medical care. A total of 460 respondents with hEDS completed the survey. Most participants felt joint pain/weakness (n = 392; 88%) was one of the most disruptive symptoms of hEDS and 63% (n = 289) reported having psychiatric conditions. BNE scores were highest in two domains: expectations to have psychosocial concerns addressed during a genetic counseling appointment (mean score = 4.4/5; SD = 0.56) and desire for positive feelings after a genetic counseling session (mean score = 4.3/5; SD = 0.59). Participants who previously had genetic counseling felt less unsure about their diagnosis (p = 0.02) and had lower need for information about hEDS (p < 0.001). Majority of participants did not feel that their doctors were knowledgeable about hEDS (n = 269; 58%) and strongly supported a multidisciplinary approach to their care (n = 445; 97%). This research provides a framework for genetics providers and other healthcare professionals to assess the needs and expectations of patients with hEDS and consider re-structuring their appointment formats to service this population.


Asunto(s)
Síndrome de Ehlers-Danlos , Inestabilidad de la Articulación , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/terapia , Asesoramiento Genético , Humanos , Inestabilidad de la Articulación/genética , Motivación
7.
Cureus ; 14(1): e21735, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35251807

RESUMEN

Pallister-Hall syndrome (PHS) is an extremely rare genetic disorder for which the diagnosis is often overlooked. The objective of this case report is to highlight how clinical features used in conjunction with brain MRI findings can lead to an expeditious diagnosis without the need for invasive measures or genetic test results. We present the case of a three-day-old infant delivered at 34 and 4/7 weeks gestation who presented with mild respiratory distress and bilious emesis in the setting of an uncomplicated gestational course and vaginal delivery with no known teratogen exposure. A diagnosis of Pallister-Hall syndrome was made on the basis of physical exam findings, hormonal abnormalities and the identification of a hypothalamic hamartoma on brain MRI. The patient underwent multiple procedures for diagnosis and management of PHS complications, including a diverting jejunostomy for a long-segment Hirschsprung's and a laryngoscopy which identified a bifid epiglottis. The patient tolerated the interventions and did not have seizures on admission. The MRI brain detection of a hypothalamic hamartoma led to an earlier diagnosis of Pallister-Hall syndrome and thus further screening and identification of complications associated with this disorder were performed before genetic analyses or brain biopsies were obtained. Given the unique MRI features of hypothalamic hamartomas, brain MRI can be a useful tool for making an early PHS diagnosis when taken with clinical features concerning possible PHS.

8.
Mol Cytogenet ; 15(1): 7, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241116

RESUMEN

BACKGROUND: Overlapping microdeletions of chromosome 3q26-3q28 have been reported in eight individuals. The common phenotype observed in these individuals include intrauterine growth restriction, short stature, microcephaly, feeding difficulties, facial dysmorphisms, limb abnormalities and developmental delay. The most striking clinical features shared among all reported cases is prenatal and postnatal growth restriction and neurodevelopmental abnormalities. CASE PRESENTATION: We identified two additional individuals with overlapping deletions and shared clinical features by high-resolution SNP oligonucleotide microarray, and refined the smallest region of overlap (SRO) to a 1.2 Mb genomic location in chromosome 3q27.1 by reviewing and comparing all published cases. We evaluated the SRO using ACMG/ClinGen current recommendations for classifying copy number variants (CNVs), and discussed the contribution of the genes deleted in the SRO to the abnormal phenotype observed in these individuals. CONCLUSIONS: This study provides further evidence supporting the existence of a novel 3q27.1 microdeletion syndrome and suggests that haploinsufficiency of potential candidate genes, DVL3, AP2M1, and PARL in the SRO in 3q27.1 is responsible for the phenotype.

9.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35146895

RESUMEN

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Discapacidad Intelectual , Canales Catiónicos TRPM , Niño , Discapacidades del Desarrollo/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Mutación Missense , Canales Catiónicos TRPM/genética , Secuenciación del Exoma
10.
Brain ; 145(12): 4232-4245, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35139179

RESUMEN

RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.


Asunto(s)
Megalencefalia , Trastornos del Neurodesarrollo , Proteína de Unión al GTP rac1 , Animales , Ratones , Megalencefalia/genética , Trastornos del Neurodesarrollo/genética , Neuronas , Células 3T3 NIH , Transducción de Señal/genética
11.
Genet Med ; 24(4): 862-869, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35078725

RESUMEN

PURPOSE: The goal of stratified medicine is to identify subgroups of patients with similar disease mechanisms and specific responses to treatments. To prepare for stratified clinical trials, genome-wide genetic analysis should occur across clinical areas to identify undiagnosed genetic diseases and new genetic causes of disease. METHODS: To advance genetically stratified medicine, we have developed and implemented broad exome sequencing infrastructure and research protocols at Columbia University Irving Medical Center/NewYork-Presbyterian Hospital. RESULTS: We enrolled 4889 adult and pediatric probands and identified a primary result in 572 probands. The cohort was phenotypically and demographically heterogeneous because enrollment occurred across multiple specialty clinics (eg, epilepsy, nephrology, fetal anomaly). New gene-disease associations and phenotypic expansions were discovered across clinical specialties. CONCLUSION: Our study processes have enabled the enrollment and exome sequencing/analysis of a phenotypically and demographically diverse cohort of patients within 1 tertiary care medical center. Because all genomic data are stored centrally with permission for longitudinal access to the electronic medical record, subjects can be recontacted with updated genetic diagnoses or for participation in future genotype-based clinical trials. This infrastructure has allowed for the promotion of genetically stratified clinical trial readiness within the Columbia University Irving Medical Center/NewYork-Presbyterian Hospital health care system.


Asunto(s)
Pruebas Genéticas , Enfermedades no Diagnosticadas , Adulto , Niño , Pruebas Genéticas/métodos , Genómica , Humanos , Atención Terciaria de Salud , Secuenciación del Exoma/métodos
12.
Hum Mutat ; 43(2): 266-282, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859529

RESUMEN

De novo variants in QRICH1 (Glutamine-rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity.


Asunto(s)
Trastorno del Espectro Autista , Enanismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Escoliosis , Trastorno del Espectro Autista/genética , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética , Convulsiones , Aumento de Peso
13.
Am J Med Genet A ; 185(12): 3740-3753, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34331327

RESUMEN

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is caused by de novo loss-of-function variants in the SON gene (MIM #617140). This multisystemic disorder is characterized by intellectual disability, seizures, abnormal brain imaging, variable dysmorphic features, and various congenital anomalies. The wide application and increasing accessibility of whole exome sequencing (WES) has helped to identify new cases of ZTTK syndrome over the last few years. To date, there have been approximately 45 cases reported in the literature. Here, we describe 15 additional individuals with variants in the SON gene, including those with missense variants bringing the total number of known cases to 60. We have reviewed the clinical and molecular data of these new cases and all previously reported cases to further delineate the most common as well as emerging clinical findings related to this syndrome. Furthermore, we aim to delineate any genotype-phenotype correlations specifically for a recurring pathogenic four base pair deletion (c.5753_5756del) along with discussing the impact of missense variants seen in the SON gene.


Asunto(s)
Anomalías Congénitas/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Antígenos de Histocompatibilidad Menor/genética , Convulsiones/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Mutación Missense/genética , Fenotipo , Convulsiones/diagnóstico , Convulsiones/patología , Secuenciación del Exoma
14.
Genet Med ; 23(10): 1912-1921, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113010

RESUMEN

PURPOSE: In this study, we aimed to characterize the clinical phenotype of a SHANK1-related disorder and define the functional consequences of SHANK1 truncating variants. METHODS: Exome sequencing (ES) was performed for six individuals who presented with neurodevelopmental disorders. Individuals were ascertained with the use of GeneMatcher and Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER). We evaluated potential nonsense-mediated decay (NMD) of two variants by making knock-in cell lines of endogenous truncated SHANK1, and expressed the truncated SHANK1 complementary DNA (cDNA) in HEK293 cells and cultured hippocampal neurons to examine the proteins. RESULTS: ES detected de novo truncating variants in SHANK1 in six individuals. Evaluation of NMD resulted in stable transcripts, and the truncated SHANK1 completely lost binding with Homer1, a linker protein that binds to the C-terminus of SHANK1. These variants may disrupt protein-protein networks in dendritic spines. Dispersed localization of the truncated SHANK1 variants within the spine and dendritic shaft was also observed when expressed in neurons, indicating impaired synaptic localization of truncated SHANK1. CONCLUSION: This report expands the clinical spectrum of individuals with truncating SHANK1 variants and describes the impact these variants may have on the pathophysiology of neurodevelopmental disorders.


Asunto(s)
Proteínas del Tejido Nervioso , Trastornos del Neurodesarrollo , Células HEK293 , Humanos , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Neuronas , Fenotipo , Secuenciación del Exoma
15.
Hum Mutat ; 42(6): 745-761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33942428

RESUMEN

KARS1 encodes a lysyl-transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi-allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1-related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo-motor dysfunction and immuno-hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo-motor dysfunction, and immuno-hematological problems are emerging phenotypes in KARS1-related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1-related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.


Asunto(s)
Anomalías Múltiples/genética , Lisina-ARNt Ligasa/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Adolescente , Alelos , Encefalopatías Metabólicas Innatas/complicaciones , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/patología , Niño , Preescolar , Estudios de Cohortes , Citosol/metabolismo , Progresión de la Enfermedad , Femenino , Homocigoto , Humanos , Lactante , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Microcefalia/complicaciones , Microcefalia/genética , Microcefalia/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Organismos Modificados Genéticamente , Linaje , Fenotipo , Saccharomyces cerevisiae
16.
J Crohns Colitis ; 15(11): 1908-1919, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891011

RESUMEN

BACKGROUND AND AIMS: Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS: Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS: In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION: Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Enfermedades del Sistema Inmune/genética , Enfermedades Inflamatorias del Intestino/genética , Proteínas Qa-SNARE/análisis , Edad de Inicio , Femenino , Variación Genética/genética , Pérdida Auditiva Sensorineural/epidemiología , Humanos , Enfermedades del Sistema Inmune/epidemiología , Recién Nacido , Enfermedades Inflamatorias del Intestino/epidemiología , Masculino , Proteínas Qa-SNARE/genética , Secuenciación del Exoma
17.
Patient Educ Couns ; 103(1): 127-135, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521424

RESUMEN

OBJECTIVE: Growing use of clinical exome sequencing (CES) has led to an increased burden of genomic education. Self-guided educational tools can minimize the educational burden for genetic counselors (GCs). The effectiveness of these tools must be evaluated. METHODS: Parents of patients offered CES were randomized to watch educational videos before their visit or to receive routine care. Parents and GCs were surveyed about their experiences following the sessions. The responses of the video (n = 102) and no-video (n = 105) groups were compared. RESULTS: GCs reported no significant differences between parents in the video and no-video groups on genetics knowledge or CES knowledge. In contrast, parents' scores on genetics knowledge questions were lower in the video than no-video group (p = 0.007). Most parents reported the videos were informative, and the groups did not differ in satisfaction with GCs or decisions to have CES. CONCLUSION: GCs and parents perceived the videos to be beneficial. However, lower scores on genetics knowledge questions highlight the need for careful development of educational tools. PRACTICE IMPLICATIONS: Educational tools should be developed and assessed for effectiveness with the input of all stakeholders before widespread implementation. Better measures of the effectiveness of these educational tools are needed.


Asunto(s)
Consejeros , Asesoramiento Genético , Exoma , Humanos , Padres , Educación del Paciente como Asunto
18.
J Clin Endocrinol Metab ; 104(10): 4667-4675, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166600

RESUMEN

CONTEXT: X-linked acrogigantism (X-LAG), a condition of infant-onset acrogigantism marked by elevated GH, IGF-1, and prolactin (PRL), is extremely rare. Thirty-three cases, including three kindreds, have been reported. These patients have pituitary adenomas that are thought to be mixed lactotrophs and somatotrophs. CASE DESCRIPTION: The patient's mother, diagnosed with acrogigantism at 21 months, underwent pituitary tumor excision at 24 months. For more than 30 years, stable PRL, GH, and IGF-1 concentrations and serial imaging studies indicated no tumor recurrence. During preconception planning, X-LAG was diagnosed: single-nucleotide polymorphism microarray showed chromosome Xq26.3 microduplication. After conception, single-nucleotide polymorphism microarray on a chorionic villus sample showed the same microduplication in the fetus, confirming familial X-LAG. The infant grew rapidly with rising PRL, GH, and IGF-1 concentrations and an enlarging suprasellar pituitary mass, despite treatment with bromocriptine. At 15 months, he underwent tumor resection. The pituitary adenoma resembled the mother's pituitary adenoma, with tumor cells arranged in trabeculae and glandular structures. In both cases, many tumor cells expressed PRL, GH, and pituitary-specific transcription factor-1. Furthermore, the tumor expressed other lineage-specific transcription factors, as well as SOX2 and octamer-binding transcription factor 4, demonstrating the multipotentiality of X-LAG tumors. Both showed an elevated Ki-67 proliferation index, 5.6% in the mother and 8.5% in the infant, the highest reported in X-LAG. CONCLUSIONS: This is a prenatally diagnosed case of X-LAG. Clinical follow-up and biochemical evaluation have provided insight into the natural history of this disease. Expression of stem cell markers and several cell lineage-specific transcription factors suggests that these tumors are multipotential.


Asunto(s)
Acromegalia/diagnóstico , Adenoma/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Gigantismo/diagnóstico , Neoplasias Hipofisarias/diagnóstico , Diagnóstico Prenatal , Acromegalia/etiología , Acromegalia/patología , Adenoma/complicaciones , Adenoma/patología , Adulto , Femenino , Gigantismo/etiología , Gigantismo/patología , Humanos , Lactante , Masculino , Relaciones Madre-Hijo , Neoplasias Hipofisarias/complicaciones , Neoplasias Hipofisarias/patología , Embarazo , Resultado del Embarazo
19.
Am J Hum Genet ; 104(5): 990-993, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006510

RESUMEN

Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.


Asunto(s)
Holoprosencefalia/genética , Holoprosencefalia/patología , Mutación Missense , Prosencéfalo/anomalías , Factores de Transcripción/genética , Animales , Niño , Femenino , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Prosencéfalo/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-31010896

RESUMEN

Two siblings, one male and one female, ages 6 and 13 yr old, have similar clinical features of global developmental delay, multiple congenital anomalies affecting the cardiac, genitourinary, and skeletal systems, and abnormal eye movements. Whole-genome sequencing revealed a homozygous splice variant (NM_014462.3:c.231+4A>C) in LSM1 that segregated with the phenotype in the family. LSM1 has a role in pre-mRNA splicing and degradation. Expression studies revealed absence of expression of the canonical isoform in the affected individuals. The Lsm1 knockout mice have a partially overlapping phenotype that affects the brain, heart, and eye. To our knowledge, LSM1 has not been associated with any human disorder; however, the tissue expression pattern, gene constraint, and the similarity of the phenotype in our patients and the knockout mice models suggest it has a role in the development of multiple organ systems in humans.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Congénitas/genética , Discapacidades del Desarrollo/genética , Proteínas Proto-Oncogénicas/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Animales , Niño , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/patología , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/patología , Exones/genética , Femenino , Homocigoto , Humanos , Masculino , Mutación , Fenotipo , Estabilidad del ARN , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...